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X = (Xk)k≥0: a Markov chain on Z+ := {0, 1, 2, ...} with X0 =
x0 and

P (Xk+1 = n+ 2|Xk = n) = pn ∈ (0, 1),

P (Xk+1 = n− 1|Xk = n) = qn := 1− pn, n ≥ 1,

P (Xk+1 = 2|Xk = 0) = p0 = 1.

We call X a (1,2) random walk.
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Definition of Skipped Points

Definition 1

If

#{n ≥ 0 : Xn = k} = 0,

we call the site k a skipped point of X.

Skipped points are those points which will never be visited by X.

Question: How many points might be skipped by X?

Recurrent case ←→ no skipped point

Transient case ←→ finite or infinite



If pn ≡ 1
3 for all n ≥ 1, then X is recurrent.

Near-critical Case: we assume the following condition holds.

Condition 1

Suppose that pn = 1
3 + rn with rn ∈ [0, 2/3), rn → 0 and (rn −

rn+1)/r
2
n → c0 for some constant 0 < c0 <∞ as n→∞.

Under Condition 1, for some N0 > 0, rn, n ≥ N0 is monotone

decreasing in n.



Set an = qn
pn

and define for n ≥ 1,

ξn =
1

an

(
1 +

1

ξn+1

)
. (1)

The solution (ξn)n≥1 of (1) is not necessarily unique, but it is

unique if
∑∞

n=1
1
an

= ∞, see Derriennic [De99]. The following

recurrence criterion of X can be find in [De99]

Recurrence Criterion

The chain X is transient if and only if
∑∞

n=1
1

ξ1···ξn < ∞ where

ξn, n ≥ 1 is a solution of (1) with ξ1 > 0.

If pn = 1/3+rn with rn ∈ [0, 2/3), then
∑∞

n=1 a
−1
n =

∑∞
n=1 pn/qn =

∞ and hence (1) has a unique solution ξn, n ≥ 1.



In this case, for n ≥ m > 0, introduce

D(m,n) =


0, if n = m,

1, if n = m+ 1,

1 +
∑n−1

j=m+1

∏j
i=m+1 ξ

−1
i , if n ≥ m+ 2.

Let

D(m) := lim
n→∞

D(m,n). (2)

Clearly

D(n) = 1 + ξ−1n+1 + ξ−1n+1ξ
−1
n+2 + ... (3)

From the above recurrence criterion, it is evident that

D(m) <∞ for all m ≥ 1 if X is transient.

We are now ready to state the main results.



Theorem 1

Suppose that Condition 1 holds. Let ξn, n ≥ 1 be the solution of
(1) and D(n) be the one defined in (2).
If

∞∑
n=2

1

D(n) log n
<∞,

then almost surely, the Markov chain X has at most finitely
many skipped points.
If there exists some δ > 0 such that D(n) ≤ δn log n for n large
enough and

∞∑
n=2

1

D(n) log n
=∞,

then with a positive probability p, p ≥ 2
3 , the Markov chain X

has infinitely many skipped points.



Criterion given in terms of the perturbation rn.

Theorem 2

Suppose that pn = 1
3 + rn, n ≥ 1, where for 1 ≤ n ≤ 3, rn = 1

3
and for n ≥ 4,

rn =
1

3

(
1

n
+

1

n(log log n)β

)
, β ≥ 0.

Then if β > 1, almost surely X has at most finitely many skipped
points; if β ≤ 1, with a positive probability p, p ≥ 2

3 , X has
infinitely many skipped points.

Under the condition of Theorem 2, with some constants 0 <
c1 < c2 < ∞, c1n(log log n)β ≤ D(n) ≤ c2n(log log n)β. So X is
transient.



Remark 1

It is hard to tell whether a site n is a skipped point or not. But

if we set

Lk := {2k, 2k + 1} then Z+ = ∪∞k=0Lk

and we know that at least one site in Lk must be visited by X

at least once. So there is at most one skipped point in Lk.

By this approach, though it is involved, we can calculate the

probability of Lk (or both Lk and Lj) containing a skipped point

by some delicate analysis of the path of the walk.

Remark 2

For the divergent case, we do not get an almost-sure result. We

believe that the number p should be 1. The number 2/3 arises

from a crude estimation we get in Proposition 1 below.



Our motivation originates from the nearest-neighbor random walk
studied in [CFR10]. Let X ′ be a Markov Chain with

P (X ′n = n+ 1|X ′n = n) = p′n = 1/2 + r′n,

P (X ′n = n− 1|X ′n = n) = q′n = 1/2− r′n, n ≥ 1,

P (X ′n = 1|X ′n = 0) = p′0 = 1.

Let

ρn :=
q′n
p′n
, D′(n) = 1 + ρ1 + ρn+1ρn+2 + ...

In [CFR10], using D′(n), a criterion is given for the finiteness
of the number of cutpoints.

We generalize only partially their results since we do not get a
almost-sure results for the divergent case.

[CFR10] E. Csáki, A. Földes and P. Révész. On the number of cutpoints of
the transient nearest neighbor random walk on the line. J. Theor.
Probab., 23(2):624-638, 2010.



For nearest neighbor random walk X ′, ρn = q′n
p′n

plays a key role
in deriving everything.

For (1,2) random walkX, an = qn
pn

does not work directly, instead,
we need

ξn =
1

an

(
1 +

1

ξn+1

)
, n ≥ 1 (4)

which is indeed a continued fraction.

Iterating (4), we get

ξn =
1

an

1 +
an+1

1 +
an+2

1 + ...

 . (5)

Letting f (n) =
an+1

1 +
an+2

1 + . . .

we have ξ−1n+1 = f (n).



Among the traditional notations of continued fractions,

K∞n=1(an|1) ≡ a1
1 +

a2
1 +

a3
1 + · · · :=

a1

1 +
a2

1 + . . .

denotes a continued fraction and

f (n) = K∞m=n+1(am|1) :=
an+1

1 +
an+2

1 + . . .

denotes its nth tail.

So we have to study the tail f (n), since

ξ−1n+1 = f (n).



Recall that
f (n) =

an+1

1 +
an+2

1 + . . .

, ξ−1n+1 = f (n).

Also, it is easy to see that

f (n) =
an+1

1 + f (n+1)
.

an =
qn
pn

=
2/3− rn
1/3 + rn

= 2− 9rn +O(r2n).
(6)

By the theory of continued fractions(see [CP08], p. 55, Theorem
3.5.2), the fact limn→∞ an = 2 implies that

lim
n→∞

f (n) = f := K∞n=1(2|1) = 1. (7)

We may guess that f (n) = 1 + brn+1 +O(r2n+1).



f (n) =
an+1

1 +
an+2

1 + . . .

, ξ−1n+1 = f (n).

Lemma 1

Suppose that Condition 1 holds and let (ξn)n≥1 be the unique
solution of (1). Then we have

ξ−1n = 1− 3rn +O(r2n). (8)

Moreover, for some n0 > 0, ξ−1n , n ≥ n0 is monotone increasing
in n.

I spent a lot of time on proving this lemma.



Escape Probability

For integers 1 ≤ a ≤ b ≤ c ≤ ∞, let

P (a, b, c) = P (X hits [0, a] before [c,∞]
∣∣X0 = b).

Lemma 2(Letchikov [Le88])

For any integers 1 ≤ a ≤ b ≤ c ≤ ∞,∑c−1
i=b ξ

−1
a+1 · · · ξ

−1
i

1 +
∑c−1

i=a+1 ξ
−1
a+1 · · · ξ

−1
i

≤ P (a, b, c) ≤
∑c

i=b ξ
−1
a+1 · · · ξ

−1
i

1 +
∑c

i=a+1 ξ
−1
a+1 · · · ξ

−1
i

.

By Lemma 2, with D(a) = D(a,∞), we get

1

D(a, c+ 1)
≤ 1− P (a, a+ 1, c) ≤ 1

D(a, c)
, a+ 1 < c ≤ ∞, (9)

1− P (a, a+ 1,∞) =
1

D(a)
. (10)

Everything depends on (9) and (10).
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1− 1

D(a, c)
≤ P (a, a+ 1, c) ≤ 1− 1

D(a, c+ 1)
, a+ 1 < c ≤ ∞,

P (a, a+ 1,∞) = 1− 1

D(a)
.



Lemma 3

Suppose that Condition 1 holds. Then we have
i)

lim
n→∞

D(n) =∞, lim
n→∞

D(n)

D(n+ 1)
= 1; (11)

ii) with n0 the one in Lemma 1, D(n), n ≥ n0 is increasing in n;

iii) for fixed n > m, D(m,n)
D(m) is decreasing in m.

Proof. For n large enough and some C > 0,

ξ−1n = 1− 3rn +O(r2n) = e−3rn+O(r2n) ≥ e−3(rn+Cr2n). (12)

Then using (12), we have

D(n) = 1 +

∞∑
j=1

ξ−1n+1 · · · ξ
−1
n+j ≥ 1 +

∞∑
j=1

e−3j(rn+1+Cr2n+1)

= 1 + e−3(rn+1+Cr2n+1)
(

1− e−3(rn+1+Cr2n+1)
)−1
→∞.



Since
D(n) = 1 + ξ−1n+1 + ξ−1n+1ξ

−1
n+2 + ..., (13)

we have
D(n) = 1 + ξ−1n+1D(n+ 1). (14)

Then we get limn→∞
D(n)
D(n+1) = 1.

ξ−1n , n ≥ n0 is increasing ⇒ D(n), n ≥ n0 is increasing.

Finally, by (14), for n > m, we have

D(m,n) = D(m)
(

1−
n−1∏
i=m

(
1− 1

D(i)

))
.

Consequently, for fixed n, D(m,n)
D(m) ,m < n is decreasing in m. 2



Hitting Time(Probability)

For k ≥ 1, define

Tk = inf{n ≥ 0 : Xn ∈ Lk},

the time X hits Lk := {2k, 2k + 1}. Denote by

hk(1) = P (XTk = 2k),

hk(2) = P (XTk = 2k + 1), k ≥ 1;

ηk,j(1) = P (X enters [j + 1,∞) at j + 1|X0 = k),

ηk,j(2) = P (X enters [j + 1,∞) at j + 2|X0 = k), 1 ≤ k ≤ j.

Lemma 4

Under Condition 1, we have

lim
k→∞

ηk,k(2) =
1

2
and lim

k→∞
hk(2) =

1

3
.
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According to the Markov property,

ηk,k(2) = pk + qkηk−1,k−1(1)ηk,k(2), k ≥ 1.

If we set ζk = ak+1ηk,k(2) for k ≥ 0, then

ζk =
ak+1

1 + ζk−1
, k ≥ 1. (15)

Iterating (15) and using ζ0 = a1η0,0(2) = a1, we have for k ≥ 1,

ζk =
ak+1

1 +

ak
1 +

ak−1
1 + · · ·+

a2
1 +

a1
1
.

For k ≥ 0, let[
Ak+1 Bk+1

Ck+1Dk+1

]
=

[
1 1

ak+1 0

] [
1 1
ak 0

]
· · ·
[

1 1
a2 0

] [
1 1
a1 0

]
. (16)

Then by induction, we have ζk =
Ck+1

Ak+1
, k ≥ 0.



An application of weak ergodicity theorem of the product of pos-
itive matrices yields that the limit

lim
k→∞

ζk = lim
k→∞

Ck+1

Ak+1

exists. Since ζk = ak+1ηk,k(2) and ak+1 → 2 as k → ∞, the
limit

η ≡ lim
k→∞

ηk,k(2)

exists. Thus letting k →∞ in (15), we get

η =
1

1 + 2η

which has solution η = 1
2 in (0, 1).



Using the Markov property again, for k ≥ 1, we have

hk+1(2) = hk(2)η2k+1,2k+1(2) + hk(1)η2k,2k(1)η2k+1,2k+1(2)

= hk(2)η2k,2k(2)η2k+1,2k+1(2) + η2k,2k(1)η2k+1,2k+1(2).
(17)

Iterating (17) and using the fact h1(2) = 0, we get

hk+1(2) =

k∑
j=1

η2j,2j(1)η2j+1,2j+1(2) · · · η2k+1,2k+1(2).

Since limk→∞ ηk,k(2) = 1
2 , then some careful estimation yields

that
lim
k→∞

hk(2) = 1/3.



Set Lk = {2k, 2k + 1}, k ≥ 0. Then Z+ =
⋃
k≥0 Lk. Denote by

CS = {k ≥ 1 : Lk contains a skipped point}.

Proposition 1

Suppose that Condition 1 holds. Then

lim
k→∞

D(2k)P (k ∈ CS) = 2/3,

and for any ε > 0, there exists a k0 > 0 that for k > j > k0,

P (j ∈CS , k ∈ CS) ≤
(3

2
+ ε
)
P (j ∈ CS)P (k ∈ CS)

D(2j + 1)

D(2j + 1, 2k)
.

The proof is long, technical and the notations are very heavy. So
it will not be presented here.



Sketched Proof of Theorem 1:

Define
Cj,k = {x : 2j < x ≤ 2k, x ∈ CS}

and set Aj,k := #Cj,k. Let lm be the largest k ∈ Cm,m+1 if
Cm,m+1 6= φ. Denote by

S := {x ≥ 0 : x is a skipped point}.

To prove the convergent case, we need the following lemma.

Lemma 5

Under Condition 1, there exists a constant 0 < c < ∞ that for
m large enough and k ∈ Cm,m+1, 2m−1 < i ≤ k,

P (i ∈ CS |lm = k, 2k ∈ S) ≥ c

D(2i, 2k + 1)
, (18)

P (i ∈ CS |lm = k, 2k + 1 ∈ S) ≥ c

D(2i, 2k + 1)
. (19)



Write

dm := P (Am,m+1 > 0), bm :=

2m−1∑
i=1

min
2m<k≤2m+1

1

D(2(k − i), 2k + 1)
.

On accounting of Lemma 5, we have for m large enough,

2m+1∑
j=2m−1+1

P (j ∈ CS) = E(Am−1,m+1)

≥ cP (Am,m+1 > 0) min
2m<k≤2m+1

2m−1∑
i=1

1

D(2(k − i), 2k + 1)

= cdmbm.

By Lemma 1, 1
ξm
≤ 1 for large m. So we have for m large enough,

D(m,n) ≤ (n−m) and hence bm ≥
∑2m−1

i=1
1

2i+1 ≥ cm.



Consequently, using Proposition 1, we have

∞∑
m=1

P (Am,m+1 > 0) =

∞∑
m=1

dm ≤
∞∑
m=1

c

bm

2m+1∑
j=2m−1+1

P (j ∈ CS)

≤
∞∑
m=1

c

m

2m+1∑
j=2m−1+1

1

D(2j)
≤
∞∑
m=1

c

m

2m+2∑
j=2m+2

1

D(j)

≤ c
∞∑
m=1

2m+2∑
j=2m+2

1

D(j) log j
≤ c

∞∑
m=1

1

D(n) log n
<∞.

An application of the Borel-Cantelli lemma yields that with prob-
ability one, only finitely many of the events {Am,m+1 > 0} occur.
We conclude that the Markov chain X has at most finitely many
skipped points almost surely.

The convergent case is proved.



Next we prove the divergent case. Set

mk = [k log k], Ak = {mk ∈ CS}.

Our purpose is to prove

P (Ak, k ≥ 1 occur infinitely often) ≥ 2

3
.

Now fix ε > 0. By Lemma 3 and Proposition 1 we can find k0
that for k ≥ k0,

P (Ak) ≥
c

D(2mk + 1)
=

c

D(2[k log k] + 1)
≥ c

D([2k log 2k])

and for l > k > k0,

P (AkAl) = P (mk ∈ CS ,ml ∈ CS)

≤ (3/2 + ε)P (mk ∈ CS)P (ml ∈ CS)
D(2mk + 1)

D(2mk + 1, 2ml)

= (3/2 + ε)

{
D(2mk + 1, 2ml)

D(2mk + 1)

}−1
P (Ak)P (Al).



Thus, ∑
k≥k0

P (Ak) ≥
∑
k≥k0

c

D([2k log 2k])
=∞. (20)

Write H(ε) = (3/2 + ε)(1 + ε). By pages of tedious computation

N∑
k=k0

N∑
l=k+1

P (AkAl) ≤
N∑

k=k0

N∑
l=k+1

H(ε)P (Ak)P (Al) + c

N∑
k=k0

P (Ak).

(21)

Consequently, we have

αH := lim
N→∞

∑N
k=k0

∑N
l=k+1 P (AkAl)−

∑N
k=k0

∑N
l=k+1HP (Ak)P (Al)[∑N

k=k0
P (Ak)

]2
≤ lim
N→∞

c∑N
k=k0

P (Ak)
= 0.



By a version of Borel-Cantelli lemma, we have

P (Ak, k ≥ k0 occur infinitely often) ≥ 1

H + 2αH

and H + 2αH ≥ 1 (see Petrov [Pe04], p. 235). Therefore,

P (Ak,k ≥ 1 occur infinitely often)

≥ P (Ak, k ≥ k0 occur infinitely often)

≥ (H + 2αH)−1 = ((3/2 + ε)(1 + ε) + 2αH)−1

≥ 1

(3/2 + ε)(1 + ε)
.

Letting ε→ 0, we conclude that

P (Ak, k ≥ 1 occur infinitely often) ≥ 2/3.

The proof of the divergent case is completed. 2



Sketched Proof of Theorem 2.

Recall that in Theorem 2, for 1 ≤ n ≤ 3, rn = 1
3 and for n ≥ 4,

with β ≥ 0 a positive number, rn = 1
3

(
1
n + 1

n(log logn)β

)
.

Lemma 6

We have rn ↓ 0 and (rn − rn+1)/r
2
n → 3, as n→∞.

By Lemma 1 and Lemma 6 we have

ξ−1n = 1− 3rn +O(r2n) = e−3rn+O(r2n).

Then going verbatim as the proof of Theorem 5.1 in [CFR10],
for some constants 0 < c3 < c4 <∞ and n large enough we have

c3n(log log n)β ≤ D(n) ≤ c4n(log log n)β. (22)

Consequently, Theorem 2 follows from Theorem 1.
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[CFR09] E. Csáki, A. Földes and P. Révész. Transient nearest neighbor
random walk on the line. J. Theor. Probab., 22(1):100-122, 2009.
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