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X = (Xg)k>0: a Markov chain on Z* := {0,1,2, ...} with X, =
T and
P(Xk11 =n+2|Xr=n)=p, €(0,1),
P(Xgr1=n—-1Xr=n)=¢q,:=1—pp, n>1,
P(Xk+1 - Q‘Xk - 0) =Ppo = 1.

We call X a (1,2) random walk.
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Definition of Skipped Points

Definition 1

#{n>0:X, =k} =0,

we call the site k a skipped point of X.

Skipped points are those points which will never be visited by X.
Question: How many points might be skipped by X7

@ Recurrent case «— no skipped point

o Transient case +— finite or infinite



If p, = % for all n > 1, then X is recurrent.

Near-critical Case: we assume the following condition holds.

Condition 1
Suppose that p, = % + rp, with r, € [0,2/3), r,, — 0 and (r, —

Tni1)/T2 — ¢ for some constant 0 < ¢y < o0 as n — oco.

Under Condition 1, for some Ny > 0, r,,n > Ny is monotone

decreasing in n.



Set a,, = Z" and define for n > 1,

£n=1<1+ ! ) 1)

an €n+1

The solution (fn)nZl of (1) is not necessarily unique, but it is

unique if » 7 = o0, see Derriennic [De99]. The following

nla

recurrence criterion of X can be find in [De99]

Recurrence Criterion

The chain X is transient if and only if Y 2| ﬁ < oo where
&n,n > 1 is a solution of (1) with & > 0.

If p, = 1/3+r, withr,, € [0,2/3), then > 2 a1 =3"°° p,/q, =
oo and hence (1) has a unique solution &,,n > 1.



In this case, for n > m > 0, introduce

0, if n =m,
D(m,n) =< 1, i —m 1,
1+ Z;L;’il-‘rl [T, & ifn>m+2

Let
D(m) := lim D(m,n).

n—oo
Clearly
D(n)=1+& 1 +& &0+ .
From the above recurrence criterion, it is evident that
D(m) < oo for all m > 1 if X is transient.

We are now ready to state the main results.



Theorem 1

Suppose that Condition 1 holds. Let &,,n > 1 be the solution of
(1) and D(n) be the one defined in (2).

If

- 1
D S,
vt D(n)logn

then almost surely, the Markov chain X has at most finitely
many skipped points.
If there exists some 0 > 0 such that D(n) < dnlogn for n large

enough and
oo

1
Z D(n)logn >

n=2

then with a positive probability p, p > %, the Markov chain X
has infinitely many skipped points.

v




Criterion given in terms of the perturbation r,.

Theorem 2

Suppose that p, = % +r,,n > 1, where for 1 <n < 3, r, = %
and for n > 4,

1/1 1
== — > 0.
=3 (n u n(loglogn)/3>’ p=0

Then if 5 > 1, almost surely X has at most finitely many skipped
points; if 5 < 1, with a positive probability p, p > %, X has
infinitely many skipped points.

v

Under the condition of Theorem 2, with some constants 0 <
c1 < ¢y < 00, crn(loglogn)? < D(n) < can(loglogn)?. So X is
transient.



Remark 1
It is hard to tell whether a site n is a skipped point or not. But
if we set

Ly := {2k,2k + 1} then ZT = U Ly

and we know that at least one site in L; must be visited by X
at least once. So there is at most one skipped point in Ly.
By this approach, though it is involved, we can calculate the

probability of Ly, (or both Lj and L;) containing a skipped point

by some delicate analysis of the path of the walk.

| \

Remark 2
For the divergent case, we do not get an almost-sure result. We

believe that the number p should be 1. The number 2/3 arises

from a crude estimation we get in Proposition 1 below.
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Our motivation originates from the nearest-neighbor random walk
studied in [CFR10]. Let X’ be a Markov Chain with

P(X, =n+1|X;, =n)=p), =1/2+r,
P(X! =n—1|X, =n)
P(X}, =1]X;, =0) =py = L.

Let ,
q
pn ===, D'(n) =14 p1 + ppt1pns2 + -

n
In [CFR10], using D'(n), a criterion is given for the finiteness
of the number of cutpoints.

We generalize only partially their results since we do not get a
almost-sure results for the divergent case.

[CFR10] E. Csédki, A. Foldes and P. Révész. On the number of cutpoints of
the transient nearest neighbor random walk on the line. J. Theor.
Probab., 23(2):624-638, 2010.



(In

For nearest neighbor random walk X', p,, = plays a key role

in deriving everything.

For (1,2) random walk X, a,, = q” does not work directly, instead,

we need . .
n=— |1+ ;n>1 4
5 (7% < fn-l—l) ( )

which is indeed a continued fraction.

Iterating (4), we get

1 Ap41
= |14+ —"_1. )
fn CLn + 1 + an+2 ( )
14 ...
an+41

Letting f(n) = we have g;il = f(”)

an+2
1+...



Among the traditional notations of continued fractions,

a1 az as ai
007 1 = — _ _ = —
el D =TT T 14+ 22

1+...

denotes a continued fraction and

an+1
F =K1 (am|1) = T s
14...

denotes its nth tail.

So we have to study the tail f(™), since

57:J1r1 _ f(n) )



Recall that _—
n n-+ n
f()zwafnﬂ .

1+...

Also, it is easy to see that

f(n) __ On+1
1 +f(n+1)'

6)

Qn 2/3 (
p— p— 2_

G, . 1/3+7’n 9, + O(r )

By the theory of continued fractions(see [CP08], p. 55, Theorem
3.5.2), the fact lim,,_,~ a,, = 2 implies that

lim M = f:=K2,(2]1) = 1. (7)

n—o0

We may guess that f(") =1+ br,,1 + O(r2.).



n An+1 - n
F = Waénh = .

1+4+...

Lemma 1

Suppose that Condition 1 holds and let (&,),>1 be the unique
solution of (1). Then we have

5771 =1-3r, + 0(7}%)- (8)

Moreover, for some ng > 0, £, 1, n > ng is monotone increasing
in n.

4

I spent a lot of time on proving this lemma.



Escape Probability

For integers 1 <a < b <c¢ <00, let
P(a,b,c) = P(X hits [0, a] before [c, 00]| Xo = b).
Lemma 2(Letchikov [Le88])

For any integers 1 <a < b < ¢ < o0,

S ! Y
Zijfl a+171 & < P(a,b,c) < Zijb §a+1_1 & _
1+Zi:a+1 §a+1"‘§i 1+Zi:a+1 §a+1"'§i

By Lemma 2, with D(a) = D(a,o0), we get

1 1
- <1-Pf(a. l.e) < —— l<e< 9
D(a,c+1) — (a,a+ ’C)_D(a,c)’a+ ¢ <00, (9)
1
1-P 1 = . 10
(@at1,00) = 5o (10

Everything depends on (9) and (10).



1 |
c
04) o4l
18 1 -~ ! Zi
- L < Paa+le<1 ! b l<e<
- a,a c - a c< oo
D(a,c) — ’ T D(a,c+1)’ -

1

P(a,a—i—l,oo):l—m.



Lemma 3

Suppose that Condition 1 holds. Then we have
i)

lim D(n) = o0, lim Dn)

n—o00 n—o0 D(n—|— ) - 1; (11)

ii) with ng the one in Lemma 1, D(n), n > ng is increasing in n;
D(m,n)

iii) for fixed n > m, D)

is decreasing in m.

Proof. For n large enough and some C > 0,
fgl —1—3r, + O(T%) _ e—3rn+0(r%) > 6—3(7'n+07'%). (12)

Then using (12), we have

[e.e] [e.e]
0= Ykl 2 1 YO
j=1 j=1

-1
=14 3rn1+0rp) (1 — 673(T"+1+C”n+1)) — 00.



Since
D(n)=1+4+& + & L6+ s (13)
we have
D(n)=1+¢&,},D(n+1). (14)

Then we get lim,,_ D?éi)l) =1

&.1,n > ng is increasing = D(n),n > ny is increasing.

Finally, by (14), for n > m, we have

D(m.n) = D(m)(1 - 1‘[ (1- Dl(z)))

Consequently, for fixed n, Dg(n )) m < n is decreasing in m. O




Hitting Time(Probability)

For k£ > 1, define
Tp =inf{n >0: X,, € Ly},

the time X hits L := {2k, 2k + 1}. Denote by

hi(1) = P(Xt, = 2k),

hi(2) = P(X1, =2k+1), k> 1,

Nk (1) = P(X enters [j + 1,00) at j + 1| Xo = k),

Mk ;j(2) = P(X enters [j +1,00) at j +2(Xo=k), 1 <k <.

Under Condition 1, we have

. 1 , 1
kli}n;o ek (2) = 5 and klgl;o hi(2) = 3




B e
4f : ,o'
@L& ; 7' 1\ kn
ke y
::: gf// K ]
o
Starting from O, Stanti~ Lrom k,
X hity Le=<{2k, 2kef) X moy hit Lk, )
ok 2k OF 2k# at ktl OV k42

h"(z) e _2,5 nk.k @) — é



According to the Markov property,
Mk (2) = Pr + Gee—1,5—1 (1)1 k(2), & > 1.
If we set ¢, = apr17;1(2) for k> 0, then

Ag+1
= k> 15
k 1T+ Cr-1 (15)

Iterating (15) and using (y = a170,0(2) = a1, we have for k > 1,

¢ I az ap
A R

For k > 0, let
AkHBkH}_[ 1 1“11]_“[11“11] (16)
Ck+1Dk+1 - ak+10 akO aQO a10 '

Then by induction, we have (;, = 2"*‘ k> 0.




An application of weak ergodicity theorem of the product of pos-
itive matrices yields that the limit

—00 k—o0 Ak+1

exists. Since ¢, = ag+1mkk(2) and ap41 — 2 as k — oo, the
limit
n= lim 7 ,(2)
k—o00

exists. Thus letting k& — oo in (15), we get

which has solution n = 3 in (0, 1).



Using the Markov property again, for k > 1, we have

hi+1(2) = hie(2)n2841,26+1(2) + P (1) 02,26 (1) N2k+1,264+1(2)

= hi(2)12k, 26 (2) M2k 11,2841 (2) + M2k 26 (1) N2041 2641 (2).-
(17)

Iterating (17) and using the fact hq(2) = 0, we get
k
a1 (2) =Y m2jai (Dngjr1.2541(2) - - Mok, 2641(2).
j=1

Since limy_yo0 Mg 1(2) = %, then some careful estimation yields
that

lim hg(2) =1/3.

k— o0



Set Ly = {2k,2k + 1}, k > 0. Then Z; = [}~ Lx- Denote by

co = {k > 1: Ly contains a skipped point}.

Proposition 1

Suppose that Condition 1 holds. Then

lim D(2k)P(k € C°) =2/3,

k—o00
and for any € > 0, there exists a kg > 0 that for k > j > ko,

D(2j +1)

3
. S Sy < (2 : s s .
P(jeCs kecC )_(2+5)P(gec )P(k € C )D(Qj“’%)

V.

The proof is long, technical and the notations are very heavy. So
it will not be presented here.



Sketched Proof of Theorem 1:

Define '
Cir=1{x:2 <z <2k zecC%

and set A, = #Cj. Let [, be the largest k € Cyymq1 if
Cimm+1 # ¢. Denote by

S:={z >0:xis a skipped point}.

To prove the convergent case, we need the following lemma.

Lemma 5

Under Condition 1, there exists a constant 0 < ¢ < oo that for
m large enough and k € Cy, 41, om—1l < <k,

C

PieC’|l,=k2k+1€S) D2k 7 (19)




Write

1
dm = P(Apms1 > 0),

z_: 2m<k<2m+1 D(2(k —1),2k+1)

On accounting of Lemma 5, we have for m large enough,

2m+1

Z P(j € C%) = E(Am—_1.m11)
j=am—141

2m—1

1
>cP(A >0 i
> cP(Apmmt1 )2,,L<I,?§21m+1 Z; D(2(k —i),2k + 1)

1=

= cdmbm.

By Lemma 1, 2 & S 1 for large m. So we have for m large enough,
D(m,n) < (n—m) and hence b, > E2m '

21+1 = cm.



Consequently, using Proposition 1, we have

00 0o © . gm+1
S PAnmir >0)=> dn< Y o > Pec?)
m=1 m=1 m=1 j=2m—141

1 > 1
< <
_cmz_:l];H (j)logj _sz::l D(n)logn<oo

An application of the Borel-Cantelli lemma yields that with prob-
ability one, only finitely many of the events { A, m+1 > 0} occur.
We conclude that the Markov chain X has at most finitely many
skipped points almost surely.

The convergent case is proved.



Next we prove the divergent case. Set
my, = [klogk], Ay, = {m; € C°}.

Our purpose is to prove

P(Ag, k > 1 occur infinitely often) >

[SSIN )

Now fix € > 0. By Lemma 3 and Proposition 1 we can find kg

that for & > ko,
C (& C
P(A;) > = >
(Ar) 2 D(2mi +1)  D(2[klogk] + 1) = D([2klog 2k])

and for [ > k > ko,

P(ApA;)) = P(my € C° my € C%)
D(2my + 1)

<(3/24¢e)P(my € CS)P(ml € CS)D(ka +1,2my)

-1
= /240 { PER LI Py,




Thus,

> P(A) =D Diaklog 2] ~ (20)
k>ko k>ko

Write H(s) = (3/2+¢)(1+¢). By pages of tedious computation

N N N
Z Z (ApA)) < > > H(e)P(AR)P(A) +c Y P(Ay).
k=ko l=k+1 k=ko lI=k+1 k=ko

(21)
Consequently, we have

o e T ke Skt PARAD = Sy Tt HP(AR) P(A)
T 2
e [Zivzko P (Ak)}

< lim — S —9

N=eo STy, P(AR)




By a version of Borel-Cantelli lemma, we have

P(Ak, k > ]{,’0 occur lnﬁnltely Oftel’l) > m

and H + 2ag > 1 (see Petrov [Pe04], p. 235). Therefore,

P(Ay,k > 1 occur infinitely often)
> P(Ag, k > ko occur infinitely often)
> (H +20p) " = ((3/2+¢)(1 4 €) + 2ay)
> 1 .
~(3/24¢)(1+¢)

Letting € — 0, we conclude that
P(Ag, k > 1 occur infinitely often) > 2/3.

The proof of the divergent case is completed.



Sketched Proof of Theorem 2.
Recall that in Theorem 2, for 1 <n <3, r, = % and for n > 4,

with 8 > 0 a positive number, r,, = % (% + m> )

We have r,, | 0 and (r, — rp41)/72 — 3, as n — oo.

By Lemma 1 and Lemma 6 we have
E=1-3r, +0(?) = e—3rn+O(ry)

Then going verbatim as the proof of Theorem 5.1 in [CFR10],
for some constants 0 < ¢3 < ¢4 < 0o and n large enough we have

esn(loglogn)® < D(n) < eyn(loglogn)”. (22)

Consequently, Theorem 2 follows from Theorem 1.
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