Points Skipped by a (1,2) Random Walk

Hua-Ming WANG
(Anhui Normal University)

14th Workshop on Markov Processes and Related Topics

16 to 20 July 2018
(1) Model and Main Results
(2) Continued Fraction and Escape Probabilities
(3) Hitting Time(Probability) and Skipped Points
(a) Sketched Proofs
$X=\left(X_{k}\right)_{k \geq 0}:$ a Markov chain on $\mathbb{Z}^{+}:=\{0,1,2, \ldots\}$ with $X_{0}=$ x_{0} and

$$
\begin{aligned}
& P\left(X_{k+1}=n+2 \mid X_{k}=n\right)=p_{n} \in(0,1) \\
& P\left(X_{k+1}=n-1 \mid X_{k}=n\right)=q_{n}:=1-p_{n}, n \geq 1, \\
& P\left(X_{k+1}=2 \mid X_{k}=0\right)=p_{0}=1
\end{aligned}
$$

We call X a $(1,2)$ random walk.

Definition of Skipped Points

Definition 1

If

$$
\#\left\{n \geq 0: X_{n}=k\right\}=0
$$

we call the site k a skipped point of X.

Skipped points are those points which will never be visited by X.
Question: How many points might be skipped by X ?

- Recurrent case \longleftrightarrow no skipped point
- Transient case \longleftrightarrow finite or infinite

If $p_{n} \equiv \frac{1}{3}$ for all $n \geq 1$, then X is recurrent.
Near-critical Case: we assume the following condition holds.

Condition 1

Suppose that $p_{n}=\frac{1}{3}+r_{n}$ with $r_{n} \in[0,2 / 3), r_{n} \rightarrow 0$ and $\left(r_{n}-\right.$ $\left.r_{n+1}\right) / r_{n}^{2} \rightarrow c_{0}$ for some constant $0<c_{0}<\infty$ as $n \rightarrow \infty$.

Under Condition 1, for some $N_{0}>0, r_{n}, n \geq N_{0}$ is monotone decreasing in n.

Set $a_{n}=\frac{q_{n}}{p_{n}}$ and define for $n \geq 1$,

$$
\begin{equation*}
\xi_{n}=\frac{1}{a_{n}}\left(1+\frac{1}{\xi_{n+1}}\right) . \tag{1}
\end{equation*}
$$

The solution $\left(\xi_{n}\right)_{n \geq 1}$ of (1) is not necessarily unique, but it is unique if $\sum_{n=1}^{\infty} \frac{1}{a_{n}}=\infty$, see Derriennic [De99]. The following recurrence criterion of X can be find in [De99]

Recurrence Criterion

The chain X is transient if and only if $\sum_{n=1}^{\infty} \frac{1}{\xi_{1} \cdots \xi_{n}}<\infty$ where $\xi_{n}, n \geq 1$ is a solution of (1) with $\xi_{1}>0$.

If $p_{n}=1 / 3+r_{n}$ with $r_{n} \in[0,2 / 3)$, then $\sum_{n=1}^{\infty} a_{n}^{-1}=\sum_{n=1}^{\infty} p_{n} / q_{n}=$ ∞ and hence (1) has a unique solution $\xi_{n}, n \geq 1$.

In this case, for $n \geq m>0$, introduce

$$
D(m, n)= \begin{cases}0, & \text { if } n=m \\ 1, & \text { if } n=m+1 \\ 1+\sum_{j=m+1}^{n-1} \prod_{i=m+1}^{j} \xi_{i}^{-1}, & \text { if } n \geq m+2\end{cases}
$$

Let

$$
\begin{equation*}
D(m):=\lim _{n \rightarrow \infty} D(m, n) \tag{2}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
D(n)=1+\xi_{n+1}^{-1}+\xi_{n+1}^{-1} \xi_{n+2}^{-1}+\ldots \tag{3}
\end{equation*}
$$

From the above recurrence criterion, it is evident that $D(m)<\infty$ for all $m \geq 1$ if X is transient.

We are now ready to state the main results.

Theorem 1

Suppose that Condition 1 holds. Let $\xi_{n}, n \geq 1$ be the solution of (1) and $D(n)$ be the one defined in (2).

If

$$
\sum_{n=2}^{\infty} \frac{1}{D(n) \log n}<\infty
$$

then almost surely, the Markov chain X has at most finitely many skipped points.
If there exists some $\delta>0$ such that $D(n) \leq \delta n \log n$ for n large enough and

$$
\sum_{n=2}^{\infty} \frac{1}{D(n) \log n}=\infty
$$

then with a positive probability $p, p \geq \frac{2}{3}$, the Markov chain X has infinitely many skipped points.

Criterion given in terms of the perturbation r_{n}.

Theorem 2

Suppose that $p_{n}=\frac{1}{3}+r_{n}, n \geq 1$, where for $1 \leq n \leq 3, r_{n}=\frac{1}{3}$ and for $n \geq 4$,

$$
r_{n}=\frac{1}{3}\left(\frac{1}{n}+\frac{1}{n(\log \log n)^{\beta}}\right), \beta \geq 0
$$

Then if $\beta>1$, almost surely X has at most finitely many skipped points; if $\beta \leq 1$, with a positive probability $p, p \geq \frac{2}{3}, X$ has infinitely many skipped points.

Under the condition of Theorem 2, with some constants $0<$ $c_{1}<c_{2}<\infty, c_{1} n(\log \log n)^{\beta} \leq D(n) \leq c_{2} n(\log \log n)^{\beta}$. So X is transient.

Remark 1

It is hard to tell whether a site n is a skipped point or not. But if we set

$$
L_{k}:=\{2 k, 2 k+1\} \text { then } \mathbb{Z}^{+}=\cup_{k=0}^{\infty} L_{k}
$$

and we know that at least one site in L_{k} must be visited by X at least once. So there is at most one skipped point in L_{k}.
By this approach, though it is involved, we can calculate the probability of L_{k} (or both L_{k} and L_{j}) containing a skipped point by some delicate analysis of the path of the walk.

Remark 2

For the divergent case, we do not get an almost-sure result. We believe that the number p should be 1 . The number $2 / 3$ arises from a crude estimation we get in Proposition 1 below.

Our motivation originates from the nearest-neighbor random walk studied in [CFR10]. Let X^{\prime} be a Markov Chain with

$$
\begin{aligned}
& P\left(X_{n}^{\prime}=n+1 \mid X_{n}^{\prime}=n\right)=p_{n}^{\prime}=1 / 2+r_{n}^{\prime} \\
& P\left(X_{n}^{\prime}=n-1 \mid X_{n}^{\prime}=n\right)=q_{n}^{\prime}=1 / 2-r_{n}^{\prime}, n \geq 1 \\
& P\left(X_{n}^{\prime}=1 \mid X_{n}^{\prime}=0\right)=p_{0}^{\prime}=1
\end{aligned}
$$

Let

$$
\rho_{n}:=\frac{q_{n}^{\prime}}{p_{n}^{\prime}}, D^{\prime}(n)=1+\rho_{1}+\rho_{n+1} \rho_{n+2}+\ldots
$$

In [CFR10], using $D^{\prime}(n)$, a criterion is given for the finiteness of the number of cutpoints.
We generalize only partially their results since we do not get a almost-sure results for the divergent case.
[CFR10] E. Csáki, A. Földes and P. Révész. On the number of cutpoints of the transient nearest neighbor random walk on the line. J. Theor. Probab., 23(2):624-638, 2010.

For nearest neighbor random walk $X^{\prime}, \rho_{n}=\frac{q_{n}^{\prime}}{p_{n}^{\prime}}$ plays a key role in deriving everything.
For $(1,2)$ random walk $X, a_{n}=\frac{q_{n}}{p_{n}}$ does not work directly, instead, we need

$$
\begin{equation*}
\xi_{n}=\frac{1}{a_{n}}\left(1+\frac{1}{\xi_{n+1}}\right), n \geq 1 \tag{4}
\end{equation*}
$$

which is indeed a continued fraction.
Iterating (4), we get

$$
\begin{equation*}
\xi_{n}=\frac{1}{a_{n}}\left(1+\frac{a_{n+1}}{1+\frac{a_{n+2}}{1+\ldots}}\right) . \tag{5}
\end{equation*}
$$

Letting $f^{(n)}=\frac{a_{n+1}}{1+\frac{a_{n+2}}{1+\ldots}}$ we have $\xi_{n+1}^{-1}=f^{(n)}$.

Among the traditional notations of continued fractions,

$$
\mathrm{K}_{n=1}^{\infty}\left(a_{n} \mid 1\right) \equiv \frac{a_{1}}{1}+\frac{a_{2}}{1}+\frac{a_{3}}{1}+\ldots:=\frac{a_{1}}{1+\frac{a_{2}}{1+\ldots}}
$$

denotes a continued fraction and

$$
f^{(n)}=\mathrm{K}_{m=n+1}^{\infty}\left(a_{m} \mid 1\right):=\frac{a_{n+1}}{1+\frac{a_{n+2}}{1+\ldots}}
$$

denotes its nth tail.
So we have to study the tail $f^{(n)}$, since

$$
\xi_{n+1}^{-1}=f^{(n)}
$$

Recall that

$$
f^{(n)}=\frac{a_{n+1}}{1+\frac{a_{n+2}}{1+\ldots}}, \xi_{n+1}^{-1}=f^{(n)}
$$

Also, it is easy to see that

$$
\begin{align*}
& f^{(n)}=\frac{a_{n+1}}{1+f^{(n+1)}} \\
& a_{n}=\frac{q_{n}}{p_{n}}=\frac{2 / 3-r_{n}}{1 / 3+r_{n}}=2-9 r_{n}+O\left(r_{n}^{2}\right) \tag{6}
\end{align*}
$$

By the theory of continued fractions(see [CP08], p. 55, Theorem 3.5.2), the fact $\lim _{n \rightarrow \infty} a_{n}=2$ implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f^{(n)}=f:=\mathrm{K}_{n=1}^{\infty}(2 \mid 1)=1 \tag{7}
\end{equation*}
$$

We may guess that $f^{(n)}=1+b r_{n+1}+O\left(r_{n+1}^{2}\right)$.

$$
f^{(n)}=\frac{a_{n+1}}{1+\frac{a_{n+2}}{1+\ldots}}, \xi_{n+1}^{-1}=f^{(n)}
$$

Lemma 1

Suppose that Condition 1 holds and let $\left(\xi_{n}\right)_{n \geq 1}$ be the unique solution of (1). Then we have

$$
\begin{equation*}
\xi_{n}^{-1}=1-3 r_{n}+O\left(r_{n}^{2}\right) . \tag{8}
\end{equation*}
$$

Moreover, for some $n_{0}>0, \xi_{n}^{-1}, n \geq n_{0}$ is monotone increasing in n.

I spent a lot of time on proving this lemma.

For integers $1 \leq a \leq b \leq c \leq \infty$, let

$$
P(a, b, c)=P\left(X \text { hits }[0, a] \text { before }[c, \infty] \mid X_{0}=b\right)
$$

Lemma 2(Letchikov [Le88])

For any integers $1 \leq a \leq b \leq c \leq \infty$,

$$
\frac{\sum_{i=b}^{c-1} \xi_{a+1}^{-1} \cdots \xi_{i}^{-1}}{1+\sum_{i=a+1}^{c-1} \xi_{a+1}^{-1} \cdots \xi_{i}^{-1}} \leq P(a, b, c) \leq \frac{\sum_{i=b}^{c} \xi_{a+1}^{-1} \cdots \xi_{i}^{-1}}{1+\sum_{i=a+1}^{c} \xi_{a+1}^{-1} \cdots \xi_{i}^{-1}}
$$

By Lemma 2, with $D(a)=D(a, \infty)$, we get

$$
\begin{align*}
& \frac{1}{D(a, c+1)} \leq 1-P(a, a+1, c) \leq \frac{1}{D(a, c)}, a+1<c \leq \infty \tag{9}\\
& 1-P(a, a+1, \infty)=\frac{1}{D(a)} \tag{10}
\end{align*}
$$

Everything depends on (9) and (10).

$$
P(a, a+1, c)
$$

$$
\begin{aligned}
& 1-\frac{1}{D(a, c)} \leq P(a, a+1, c) \leq 1-\frac{1}{D(a, c+1)}, a+1<c \leq \infty \\
& P(a, a+1, \infty)=1-\frac{1}{D(a)}
\end{aligned}
$$

Lemma 3

Suppose that Condition 1 holds. Then we have i)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} D(n)=\infty, \lim _{n \rightarrow \infty} \frac{D(n)}{D(n+1)}=1 \tag{11}
\end{equation*}
$$

ii) with n_{0} the one in Lemma $1, D(n), n \geq n_{0}$ is increasing in n; iii) for fixed $n>m, \frac{D(m, n)}{D(m)}$ is decreasing in m.

Proof. For n large enough and some $C>0$,

$$
\begin{equation*}
\xi_{n}^{-1}=1-3 r_{n}+O\left(r_{n}^{2}\right)=e^{-3 r_{n}+O\left(r_{n}^{2}\right)} \geq e^{-3\left(r_{n}+C r_{n}^{2}\right)} \tag{12}
\end{equation*}
$$

Then using (12), we have

$$
\begin{aligned}
D(n) & =1+\sum_{j=1}^{\infty} \xi_{n+1}^{-1} \cdots \xi_{n+j}^{-1} \geq 1+\sum_{j=1}^{\infty} e^{-3 j\left(r_{n+1}+C r_{n+1}^{2}\right)} \\
& =1+e^{-3\left(r_{n+1}+C r_{n+1}^{2}\right)}\left(1-e^{-3\left(r_{n+1}+C r_{n+1}^{2}\right)}\right)^{-1} \rightarrow \infty
\end{aligned}
$$

Since

$$
\begin{equation*}
D(n)=1+\xi_{n+1}^{-1}+\xi_{n+1}^{-1} \xi_{n+2}^{-1}+\ldots \tag{13}
\end{equation*}
$$

we have

$$
\begin{equation*}
D(n)=1+\xi_{n+1}^{-1} D(n+1) \tag{14}
\end{equation*}
$$

Then we get $\lim _{n \rightarrow \infty} \frac{D(n)}{D(n+1)}=1$.
$\xi_{n}^{-1}, n \geq n_{0}$ is increasing $\Rightarrow D(n), n \geq n_{0}$ is increasing.
Finally, by (14), for $n>m$, we have

$$
D(m, n)=D(m)\left(1-\prod_{i=m}^{n-1}\left(1-\frac{1}{D(i)}\right)\right)
$$

Consequently, for fixed $n, \frac{D(m, n)}{D(m)}, m<n$ is decreasing in m.

Hitting Time(Probability)

For $k \geq 1$, define

$$
T_{k}=\inf \left\{n \geq 0: X_{n} \in L_{k}\right\}
$$

the time X hits $L_{k}:=\{2 k, 2 k+1\}$. Denote by

$$
\begin{aligned}
& h_{k}(1)=P\left(X_{T_{k}}=2 k\right) \\
& h_{k}(2)=P\left(X_{T_{k}}=2 k+1\right), k \geq 1 \\
& \eta_{k, j}(1)=P\left(X \text { enters }[j+1, \infty) \text { at } j+1 \mid X_{0}=k\right), \\
& \eta_{k, j}(2)=P\left(X \text { enters }[j+1, \infty) \text { at } j+2 \mid X_{0}=k\right), 1 \leq k \leq j
\end{aligned}
$$

Lemma 4

Under Condition 1, we have

$$
\lim _{k \rightarrow \infty} \eta_{k, k}(2)=\frac{1}{2} \text { and } \lim _{k \rightarrow \infty} h_{k}(2)=\frac{1}{3} .
$$

Starting from 0 ,
X hits $L_{k}=\{2 k, 2 k+1\}$
at $2 k$ or $2 k+1$

$$
h_{k}(2) \longrightarrow \frac{1}{3}
$$

Starting from k, X may hit $[k+1, \infty)$ at $k+1$ or $k+2$

$$
\eta_{k, k}(2) \longrightarrow \frac{1}{2}
$$

According to the Markov property,

$$
\eta_{k, k}(2)=p_{k}+q_{k} \eta_{k-1, k-1}(1) \eta_{k, k}(2), k \geq 1
$$

If we set $\zeta_{k}=a_{k+1} \eta_{k, k}(2)$ for $k \geq 0$, then

$$
\begin{equation*}
\zeta_{k}=\frac{a_{k+1}}{1+\zeta_{k-1}}, k \geq 1 \tag{15}
\end{equation*}
$$

Iterating (15) and using $\zeta_{0}=a_{1} \eta_{0,0}(2)=a_{1}$, we have for $k \geq 1$,

$$
\zeta_{k}=\frac{a_{k+1}}{1}+\frac{a_{k}}{1}+\frac{a_{k-1}}{1}+\cdots+\frac{a_{2}}{1}+\frac{a_{1}}{1} .
$$

For $k \geq 0$, let

$$
\left[\begin{array}{ll}
A_{k+1} & B_{k+1} \tag{16}\\
C_{k+1} & D_{k+1}
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \\
a_{k+1} & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
a_{k} & 0
\end{array}\right] \cdots\left[\begin{array}{rr}
1 & 1 \\
a_{2} & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
a_{1} & 0
\end{array}\right] .
$$

Then by induction, we have $\zeta_{k}=\frac{C_{k+1}}{A_{k+1}}, k \geq 0$.

An application of weak ergodicity theorem of the product of positive matrices yields that the limit

$$
\lim _{k \rightarrow \infty} \zeta_{k}=\lim _{k \rightarrow \infty} \frac{C_{k+1}}{A_{k+1}}
$$

exists. Since $\zeta_{k}=a_{k+1} \eta_{k, k}(2)$ and $a_{k+1} \rightarrow 2$ as $k \rightarrow \infty$, the limit

$$
\eta \equiv \lim _{k \rightarrow \infty} \eta_{k, k}(2)
$$

exists. Thus letting $k \rightarrow \infty$ in (15), we get

$$
\eta=\frac{1}{1+2 \eta}
$$

which has solution $\eta=\frac{1}{2}$ in $(0,1)$.

Using the Markov property again, for $k \geq 1$, we have

$$
\begin{align*}
h_{k+1}(2) & =h_{k}(2) \eta_{2 k+1,2 k+1}(2)+h_{k}(1) \eta_{2 k, 2 k}(1) \eta_{2 k+1,2 k+1}(2) \\
& =h_{k}(2) \eta_{2 k, 2 k}(2) \eta_{2 k+1,2 k+1}(2)+\eta_{2 k, 2 k}(1) \eta_{2 k+1,2 k+1}(2) . \tag{17}
\end{align*}
$$

Iterating (17) and using the fact $h_{1}(2)=0$, we get

$$
h_{k+1}(2)=\sum_{j=1}^{k} \eta_{2 j, 2 j}(1) \eta_{2 j+1,2 j+1}(2) \cdots \eta_{2 k+1,2 k+1}(2)
$$

Since $\lim _{k \rightarrow \infty} \eta_{k, k}(2)=\frac{1}{2}$, then some careful estimation yields that

$$
\lim _{k \rightarrow \infty} h_{k}(2)=1 / 3
$$

Set $L_{k}=\{2 k, 2 k+1\}, k \geq 0$. Then $\mathbb{Z}_{+}=\bigcup_{k \geq 0} L_{k}$. Denote by

$$
C^{S}=\left\{k \geq 1: L_{k} \text { contains a skipped point }\right\} .
$$

Proposition 1

Suppose that Condition 1 holds. Then

$$
\lim _{k \rightarrow \infty} D(2 k) P\left(k \in C^{S}\right)=2 / 3
$$

and for any $\varepsilon>0$, there exists a $k_{0}>0$ that for $k>j>k_{0}$,
$P\left(j \in C^{S}, k \in C^{S}\right) \leq\left(\frac{3}{2}+\varepsilon\right) P\left(j \in C^{S}\right) P\left(k \in C^{S}\right) \frac{D(2 j+1)}{D(2 j+1,2 k)}$.

The proof is long, technical and the notations are very heavy. So it will not be presented here.

Sketched Proof of Theorem 1:

Define

$$
C_{j, k}=\left\{x: 2^{j}<x \leq 2^{k}, x \in C^{S}\right\}
$$

and set $A_{j, k}:=\# C_{j, k}$. Let l_{m} be the largest $k \in C_{m, m+1}$ if $C_{m, m+1} \neq \phi$. Denote by

$$
S:=\{x \geq 0: x \text { is a skipped point }\} .
$$

To prove the convergent case, we need the following lemma.

Lemma 5

Under Condition 1, there exists a constant $0<c<\infty$ that for m large enough and $k \in C_{m, m+1}, 2^{m-1}<i \leq k$,

$$
\begin{align*}
& P\left(i \in C^{S} \mid l_{m}=k, 2 k \in S\right) \geq \frac{c}{D(2 i, 2 k+1)}, \tag{18}\\
& P\left(i \in C^{S} \mid l_{m}=k, 2 k+1 \in S\right) \geq \frac{c}{D(2 i, 2 k+1)} \tag{19}
\end{align*}
$$

Write
$d_{m}:=P\left(A_{m, m+1}>0\right), b_{m}:=\sum_{i=1}^{2^{m-1}} \min _{2^{m}<k \leq 2^{m+1}} \frac{1}{D(2(k-i), 2 k+1)}$.
On accounting of Lemma 5, we have for m large enough,

$$
\begin{aligned}
& \sum_{2^{m-1}+1}^{2^{m+1}} P\left(j \in C^{S}\right)=E\left(A_{m-1, m+1}\right) \\
& \quad \geq c P\left(A_{m, m+1}>0\right) \min _{2^{m}<k \leq 2^{m+1}} \sum_{i=1}^{2^{m-1}} \frac{1}{D(2(k-i), 2 k+1)} \\
& \quad=c d_{m} b_{m} .
\end{aligned}
$$

By Lemma $1, \frac{1}{\xi_{m}} \leq 1$ for large m. So we have for m large enough, $D(m, n) \leq(n-m)$ and hence $b_{m} \geq \sum_{i=1}^{2^{m-1}} \frac{1}{2 i+1} \geq c m$.

Consequently, using Proposition 1, we have

$$
\begin{aligned}
& \sum_{m=1}^{\infty} P\left(A_{m, m+1}>0\right)=\sum_{m=1}^{\infty} d_{m} \leq \sum_{m=1}^{\infty} \frac{c}{b_{m}} \sum_{j=2^{m-1}+1}^{2^{m+1}} P\left(j \in C^{S}\right) \\
& \quad \leq \sum_{m=1}^{\infty} \frac{c}{m} \sum_{j=2^{m-1}+1}^{2^{m+1}} \frac{1}{D(2 j)} \leq \sum_{m=1}^{\infty} \frac{c}{m} \sum_{j=2^{m}+2}^{2^{m+2}} \frac{1}{D(j)} \\
& \quad \leq c \sum_{m=1}^{\infty} \sum_{j=2^{m}+2}^{2^{m+2}} \frac{1}{D(j) \log j} \leq c \sum_{m=1}^{\infty} \frac{1}{D(n) \log n}<\infty
\end{aligned}
$$

An application of the Borel-Cantelli lemma yields that with probability one, only finitely many of the events $\left\{A_{m, m+1}>0\right\}$ occur. We conclude that the Markov chain X has at most finitely many skipped points almost surely.
The convergent case is proved.

Next we prove the divergent case. Set

$$
m_{k}=[k \log k], A_{k}=\left\{m_{k} \in C^{S}\right\}
$$

Our purpose is to prove

$$
P\left(A_{k}, k \geq 1 \text { occur infinitely often }\right) \geq \frac{2}{3}
$$

Now fix $\varepsilon>0$. By Lemma 3 and Proposition 1 we can find k_{0} that for $k \geq k_{0}$,

$$
P\left(A_{k}\right) \geq \frac{c}{D\left(2 m_{k}+1\right)}=\frac{c}{D(2[k \log k]+1)} \geq \frac{c}{D([2 k \log 2 k])}
$$

and for $l>k>k_{0}$,

$$
\begin{aligned}
P\left(A_{k} A_{l}\right) & =P\left(m_{k} \in C^{S}, m_{l} \in C^{S}\right) \\
& \leq(3 / 2+\varepsilon) P\left(m_{k} \in C^{S}\right) P\left(m_{l} \in C^{S}\right) \frac{D\left(2 m_{k}+1\right)}{D\left(2 m_{k}+1,2 m_{l}\right)} \\
& =(3 / 2+\varepsilon)\left\{\frac{D\left(2 m_{k}+1,2 m_{l}\right)}{D\left(2 m_{k}+1\right)}\right\}^{-1} P\left(A_{k}\right) P\left(A_{l}\right) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\sum_{k \geq k_{0}} P\left(A_{k}\right) \geq \sum_{k \geq k_{0}} \frac{c}{D([2 k \log 2 k])}=\infty \tag{20}
\end{equation*}
$$

Write $H(\varepsilon)=(3 / 2+\varepsilon)(1+\varepsilon)$. By pages of tedious computation

$$
\begin{equation*}
\sum_{k=k_{0}}^{N} \sum_{l=k+1}^{N} P\left(A_{k} A_{l}\right) \leq \sum_{k=k_{0}}^{N} \sum_{l=k+1}^{N} H(\varepsilon) P\left(A_{k}\right) P\left(A_{l}\right)+c \sum_{k=k_{0}}^{N} P\left(A_{k}\right) \tag{21}
\end{equation*}
$$

Consequently, we have

$$
\begin{aligned}
\alpha_{H} & :=\lim _{N \rightarrow \infty} \frac{\sum_{k=k_{0}}^{N} \sum_{l=k+1}^{N} P\left(A_{k} A_{l}\right)-\sum_{k=k_{0}}^{N} \sum_{l=k+1}^{N} H P\left(A_{k}\right) P\left(A_{l}\right)}{\left[\sum_{k=k_{0}}^{N} P\left(A_{k}\right)\right]^{2}} \\
& \leq \lim _{N \rightarrow \infty} \frac{c}{\sum_{k=k_{0}}^{N} P\left(A_{k}\right)}=0
\end{aligned}
$$

By a version of Borel-Cantelli lemma, we have

$$
P\left(A_{k}, k \geq k_{0} \text { occur infinitely often }\right) \geq \frac{1}{H+2 \alpha_{H}}
$$

and $H+2 \alpha_{H} \geq 1$ (see Petrov [Pe04], p. 235). Therefore,

$$
\begin{aligned}
P\left(A_{k}, k\right. & \geq 1 \text { occur infinitely often }) \\
& \geq P\left(A_{k}, k \geq k_{0} \text { occur infinitely often }\right) \\
& \geq\left(H+2 \alpha_{H}\right)^{-1}=\left((3 / 2+\varepsilon)(1+\varepsilon)+2 \alpha_{H}\right)^{-1} \\
& \geq \frac{1}{(3 / 2+\varepsilon)(1+\varepsilon)} .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$, we conclude that

$$
P\left(A_{k}, k \geq 1 \text { occur infinitely often }\right) \geq 2 / 3 .
$$

The proof of the divergent case is completed.

Sketched Proof of Theorem 2.

Recall that in Theorem 2, for $1 \leq n \leq 3, r_{n}=\frac{1}{3}$ and for $n \geq 4$, with $\beta \geq 0$ a positive number, $r_{n}=\frac{1}{3}\left(\frac{1}{n}+\frac{1}{n(\log \log n)^{\beta}}\right)$.

Lemma 6

We have $r_{n} \downarrow 0$ and $\left(r_{n}-r_{n+1}\right) / r_{n}^{2} \rightarrow 3$, as $n \rightarrow \infty$.
By Lemma 1 and Lemma 6 we have

$$
\xi_{n}^{-1}=1-3 r_{n}+O\left(r_{n}^{2}\right)=e^{-3 r_{n}+O\left(r_{n}^{2}\right)} .
$$

Then going verbatim as the proof of Theorem 5.1 in [CFR10], for some constants $0<c_{3}<c_{4}<\infty$ and n large enough we have

$$
\begin{equation*}
c_{3} n(\log \log n)^{\beta} \leq D(n) \leq c_{4} n(\log \log n)^{\beta} . \tag{22}
\end{equation*}
$$

Consequently, Theorem 2 follows from Theorem 1.
[CFR09] E. Csáki, A. Földes and P. Révész. Transient nearest neighbor random walk on the line. J. Theor. Probab., 22(1):100-122, 2009.
[CFR10] E. Csáki, A. Földes and P. Révész. On the number of cutpoints of the transient nearest neighbor random walk on the line. J. Theor. Probab., 23(2):624-638, 2010.
[CP08] A. Cuyt, V. Brevik Petersen, B. Verdonk, H. Waadeland and W. B. Jones. Handbook of Continued Fractions for Special Functions. Springer Netherlands, 2008.
[De99] Y. Derriennic. Random walks with jumps in random environments (Examples of cycle and weight representations). Probability Theory and Mathematical Statistics(Proceedings of the 7th Vilnius Conference), 199-212, Utrecht, VSP Press, 1999.
[JW90] L. Jacobsen and H. Waadeland. An asymptotic property for tails of limit periodic continued fractions. Rocky Mountain J. Math., 20(1): 151-163, 1990.
[JLP08] N. James, R. Lyons and Y. Peres. A transient Markov chain with finitely many cutpoints. In: IMS Collections Probability and Statistics: Essays in Honor of David A. Freedman, 2:24-29, Institute of Mathematical Statistics, 2008.
[Le88] A. V. Letchikov. A limit theorem for a random walk in a random environment. Theory Probab. Appl., 33(2):228-238, 1988.
[Lo95] L. Lorentzen. Computation of limit periodic continued fractions. A survey. Numer. Algorithms, 10(1): 69-111, 1995.
[Pe04] V.V. Petrov. A generalization of the Borel-Cantelli lemma. S tatist. Probab. Lett., 67(3):233-239, 2004.
[Se81] E. Seneta. Non-negative matrices and Markov chain. 2nd. Ed., Springer Newyork, 1981.
[Wa87] H. Waadeland. Local properties of continued fractions. Lecture Notes in Mathematics, Springer-Verlag 1237: 239-250, 1987.

Acknowledgement

> Thanks a lot非常感謝
> hmking@ahnu.edu.cn

